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Key features

The model is capable of approximating most of the known types of
rate-independent symmetrical hysteresis loops encountered in the
practice. The model allows building smooth, piecewise-linear,
hybrid, minor, mirror-reflected, inverse, reverse, double and triple

hysteresis loops. The error of approximation of a hysteresis loop by
the model does not exceed 1% as a rule




Original model

With the original model, a family of hysteresis loops is described by
the following parametric equations

x(a)=acos™a +b sin" a,

yla)=b,sina, 0

where ais a real parameter (a=0...2m); a is x coordinate of the split
point; b,, b, are the saturation point coordinates; mis a positive odd
integer (m=1, 3, 5, ...) defining the curvature of the hysteresis loop;
nis a positive integer defining the type of the hysteresis loop and its
curvature. With n=1, the Leaf loop type is formed; with n=2, 4, 6, ...
— the Crescent (Boomerang), and with n=3, 5, 7, ... —the Classical.




Hysteresis loops supported by the
original model

Hysteresis loops of Leaf
(n=1), Crescent (Boomerang,
n=2), and Classical (n=3)
types. The area of all the
three loops is the same




Representation as a sum of an unsplit
loop and a splitting curve

Hysteresis loop (1) can always be represented as a sum of two
parametric curves

x(a) = x(a) + x,(a)
Y(a): Y1(a)+y2(a)=

where x;(a)=b,sin"a, y,(a)=b,sina is the unsplit loop;
X,(@)=acos™a, y,(a)=0 is the splitting curve.




Representation as a sum of harmonics

The generating function x(a) can easily be expanded in the Fourier

series
/

x(a) = ;(Ak cos(ka)+ B, sin(ka)), (3)

y(a) =b,sina,

where the Fourier coefficients A,, B, for odd n are determined by the
algebraic formulas

m-kK
Ak = 2/?7—1 sz
k1| p Dk (4)
B, = (_1)[ : J 7 Cn” s

where C/ = /!/[k! (/- k)!] is a binomial coefficient.




Representation as a frequency
spectrum

Having the Fourier coefficients A,, B,, the generating function x(a)
can also be represented as

X(a)= Y. Am, coslka - ¢,) 5)

where amplitudes Am, and phases ¢, of the harmonics are
determined by the following formulas




Loop tilting by rotation of the
coordinate system

The required loop tilting by angle at the split point a is performed
using the following transformations

x(a) = x(@)+sin6(b, sin@+ b, cos B)sina - sin” a)

7
y(a) = y(a)+sin H(bx cosd - b, sin H)(sina - sin” a) )

Area S of the loop (7) is calculated by the formula

B n-1
m-1 o
Cm<sin9(bxcosz9—bysin9]1—(m+1)ﬂ 2k*1_|yp | (8)

Am+n-2k| 7




Phase shifts Aa
cC-

Phase shifts Aa,, Aa,, Aa, permit us to tilt the hysteresis loop
smoothly by the required angle fat the split point a as well as to
smoothly change the curvature of the loop

x(a) = 4cos™(a + Aa,) + b, sin"(a + Aa,),
yla)=b,sin(a +Aay),

n

where a, b, are corrected parameters of a, b,, respectively.

N

The corrected parameters a, b, can be found by the formulas
acos”"(Aa, - Aa,)-b sin"(Aa, - Aa,)

sin™(Aa, - Aa,)sin”(Aa, - Aa,) + cos™ (Aa, - Aa,)cos”(Aa, - Aa,)’

- asin™(Aa, - Aa,) +b cos™(Aa, - Aa,)

" sin™(Aa, - Aa,)sin"(Aa, - Aa,) +cos™(Aa, - Aa,)cos"(Aa, - Aa,)

5=
(10)




Effects of the phase shifts Aa on the
Classical hysteresis loop

(a) Tilting with phase shift Aa,, continuous change in the curvature by
phase shift (b) Aa,, (c) Aa;,




The Fourier coefficients A,, B, when
using the phase shifts Aa

A m-k _ " n-k
A= 2:C,F coslhaa)+ (- 2L ¢ 2 sin(kaa,)
-4 "k K1 p K "
B =—2¢ 2 sin(kna,)+(-1) JZT:Cf cos(kha,)




Loop area when using the phase
shifts Aa

A m-1 A n-1

2_C 2 cos(ba, - Aa,)+ O, C? sin(Aa, - Aa,) |

m-1 n-1 y

S =

Am.(cosAa, - tang, sinAa;)

Jtan? g, +1
= (A cosAa, - B sinAa, )b

y

9] (12)

y

Note that the loop area depends on the amplitude and phase of the
1st harmonic only; the rest of harmonics do not affect the loop area.




Loop tilting and curving by skewing of
the coordinate system

Hysteresis loops can be tilted by skewing of the coordinate system by
angle falong the x axis and by angle « along the y axis

%(a) = x(a) +tané(b, tank + b, )sina - sin" a), 13

y(a) = y(a)+ b, tank(sina - sin"a)

The area of the skewed loop is calculated by the formula

[ n-1 ] )
’

m = 2 2k +1
S = C b tank|{1-{m+1 +b
57O 1, )] = || (14

- - J




Tilting and curving of the Classical loop
by skewing of the coordinate system

Tilting the Classical loop Changing the curvature of the Classical loop
by skewing the by skewing the coordinate system by angle «
coordinate system by along the y axis. Tilting the loop at the split
angle Galong the x axis point by angle (a) &15°, (b) &=-15°



Piecewise-linear hysteresis loops built
on trapezoidal pulses

Replacing the sine and the cosine in the generating functions x(a),
y(a) of model (1) with unit-amplitude trapezoidal pulses trp,, trp.,
respectively, one can produce piecewise-linear hysteresis loops built

on trapezoidal pulses
x(a)= atrp™ a + (b, - a)trp” a,

(15)
yla)=b,tmp, a,

where a=0...T; T is the pulse period.




Trapezoidal pulses

The trapezoidal pulses trp are defined as follows

trp, @ = Z[ Di . (a - %ij(— 1) rect,(a,i) + (- 1) rect, (a, /)}

i

G
trp, a =1rp, a+z ,

where d, D are the upper and the lower bases of the trapezoidal

pulses, respectively (D=3d, T=d+D=4d); rect,, rect, are rectangular
pulses.




Rectangular pulses

The rectangular pulses rect,, rect, are determined by a step function

H(a) (Heaviside function)

rect1(a,i):H(a—Ii+ D-d —H(a—Ii— D_dj,
2 4 2 4

rect,(a,i) =H a-I/_M _H a_II-_D+3d
2 4 2 4




Piecewise-linear hysteresis loops built
on trapezoidal pulses

Piecewise-linear hysteresis
loop Leaf (Play without
Whiskers, n=1), hybrid

Crescent (hybrid Boomerang,
n=2), and hybrid Classical
(n=3) built on trapezoidal
pulses. The area of all the

three loops is the same




Piecewise-linear hysteresis loops with
phase shifts Aa

Taking into account the phase shifts Aa,, Aa,, Aa,, equations (15)
are written as

x(a) = atrp?(a + Aa,) + b, trp” (o + Aay,), H8)
J{a)= 6, o, (o + o)

The corrected parameters a, b, are determined by the following
formulas
atrp?(a, + Aa, - Aa,)-b trp”(Aa, - Aa,)
trp? (Aa;, - Aay )trpl(a, + Aa, - Aay )~ trp] (@, + Aa, - Aa, )trp? (Aa, - Ady )’
b = b.trp"(Aa, - Aa,) - atrp”(a, + Aa, - Aa,) |
“ trp”(Aa, - Aay)trp”(a, + Aa, - Aa,)-trp"(a, + Aa, - Aa, )trp” (Aa, - Aa,)

a=

(19)




Play-Relay-Play, Play-Play, Play-Relay
loops with gain/attenuation

To obtain piecewise-linear loops with gain/attenuation y; one should
add to (18) an extra term (curve) responsible for gain/attenuation
(m=n=1)

)_((a) = x(a),

y(a) - Y(a)+tany[x(a)—bx trps(a+Aa3)] (20)




Piecewise-linear hysteresis loops Play-
Relay-Play, Play-Play, Play-Relay

(a) - . . x\«, (b) - . . X\a (C)

Piecewise-linear hysteresis loops with gain/attenuation . (a) Play-Relay-Play,
(b) Play-Play, (c) Play-Relay built on trapezoidal pulses using the phase shifts




Whiskerless Play and Non-ideal Relay
loops with gain/attenuation

Whiskerless Play and Non-ideal Relay loops with gain/attenuation are
built by the following equations

)_((a) _ atan Birp, a + (by - b, tan y)trpS a,

tan S —tany (21)
y(a) = tan B(x(a) - atrp, @),
where the loop parameters a, b,, b,, Sare interrelated as

tan=b/(b,-a).




Whiskerless Play and Non-ideal Relay
loops built on trapezoidal pulses
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Area of Play and Non-ideal Relay loops
S

The areas of the simplest piecewise-linear loops (21) having a
parallelogram shape are determined by the formula

- . .
8:43{(3 b, )tany +b, tan 5 — asm,Bsmy}

tan 8 - tany sin(8-y) (22)




Whiskerless hybrid Classical
hysteresis loop

Whiskerless hybrid Classical loops with the desired slope f=172-6 at
the split point are built according to the following transformation

x(a) = x(a) + b, sinbltrp, @ — trp” @)

y(a)=yla)
Whiskerless hybrid Classical loops having the required slope S at the
split point, the required inclination (gain/attenuation) yof the

rectilinear section, and the required curvature « of the curvilinear
section are built according to the following transformation

(23)

%(a) = x(a) + tan6|(b, - a)tan - b, tany + b |(trp, & — trp! @)
}7(0) = y(a) [(bx - a)tan/( b, tan y](trpS a-trpl a )+ atan y(’[rpC atrpla—trpl a

where k=2, 4, ... is an additional parameter to control the loop
curvature.

)(24)




Hybrid Classical whiskerless hysteresis
loops built on trapezoidal pulses

0.5 J 05

X (z) ~
(b)

Hybrid Classical loops Hybrid Classical loops with specified slope
with the specified slope  [(=TV2-6, gain/attenuation ), and curvature «. (a)

[=1U2-6 at the split point Various gains yfor fixed fand «, (b) various
curvatures « for fixed fand y



Area of hybrid Classical loop
-

The area of hybrid Classical loop (23) is calculated by the formula

S=4ab,. (29)

The area of hybrid Classical loop with non-zero gain/attenuation (24)
Is calculated by the formula

( _ _ k(n = 1) |
o (b, - a)tank - b tany + by]{ (e 1)+ K) tan@tany + 1} o
=43¢ .
k
\+ (b, - a)(n —tany - tankj




Loops built on triangular pulses

Besides trapezoidal pulses trp, formulas (9) can operate with
triangular pulses tri, which are particular cases of the trapezoidal

pulses (d=0, T=D)
x(a) = atri™(a + Aa,) + b, tri%(a + Aa),

27
yla)=b, trij(a +Aa,). 27)
The corrected parameters a, b, are determined by the following
formulas
5= atri’(Aa, - Aa,) -b tri? (Aa, - Aar,)
tri” (A, - Aa )trl (Aa, Aa)+tn (Aa - Aa)ti’(Aa, - Aa,)’ 28)

b = atri”(Aa, - Aa,) +b, 17 (Aa, - Aar,)
“ tri"(Aa, - Aa, )trl (Aa, - Aa,)+ 1t (Acr1 Aa, )tri? (Aa, - Aar,)




Triangular pulses

The triangular pulses tri are defined as follows

tri_ar = %Z(g - gij(— 1) rect(a, i),

tri,a = tris(a' + Ij
4

where rect are rectangular pulses.
The rectangular pulses rect are determined by a step function H(a)

rect(a,i) =H a-LivT-Ha-Li-T (30)
2 4 2 4




Piecewise-linear hysteresis loop Leaf
built on triangular pulses

0.5

Piecewise-linear loop Leaf
(bi-linear loop, Play without
Whiskers) at different values
of phase shift Aa; built on
triangular pulses




General expression for a piecewise-
linear loops Play and Non-ideal Relay

The general expression describing a piecewise-linear hysteresis loop
Play with Gain is as follows

x(a)=b,tri_ a,

a,tan (31)

tanf —-tany

y(a)=(b,~b,tan y)trps(a - ] +b tanytri_ a,

where a_=al/(4b,) is the value of parameter o at split point a.

The upper base d of the trapezoidal pulses trp, in (31) is determined
according to the formula

_ Tlbtang-b,)
2b, (tan B —tany)’
and the lower base D according to the formula D=T-d.

(32)




Piecewise-linear Play hysteresis loops
built on triangular pulses

e (@) Play with
Gain, (b) Play
with Gain w/o
= ) Whiskers
(parallelogram
- S T loop), (c) Play
o T T e T 0 e T 0 " ™ with Attenuation,
|y 1] 5 1T oees 1 (d) Play with
[ [ | Attenuation w/o
: : Whiskers, (e)
Play (backlash),
o - (f) Play w/o
Whiskers
© E ZN g o5 o 05 @ " g % P



Piecewise-linear Relay hysteresis loops
built on triangular pulses

[l PR FW S it
(h) Non-ideal
{ o { o Relay with Gain
w/o Whiskers, (i)
— ) — [ | Non-ideal Relay
L 1| with Attenuation,
o LT T e T T e T T () Non-ideal Relay
e [T I 1 with Attenuation
L [ | | w/o Whiskers, (k)
Non-ideal Relay
(Schmitt trigger),
Ny | () Non-ideal Relay
— | | 7 w/o Whiskers
. B I S _| (rectangular loop)
] (k) @



Double non-self-crossing hysteresis
loop

The equations for a double smooth loop non-self-crossing in the
origin of coordinates (0-shaped loop) are as follows (a=0...2m)

x(a) = X(Za — gsgn(ﬂ— a)- Aasj + b, sgn(7-a)
= (2recta - 1)({20 -Aa, - IET) + bxj,
y(a)= y(2a - gsgn(ﬂ— a) - Aasj +b, sgn(ﬂ— a)

= (2 recta - 1)[y(20 -Aa, - gj + byj,

where sgna=a/|al is the signum function; recta=H(a)-H(a-1) is
a Twide rectangular pulse.

(33)




Double self-crossing hysteresis loop

The loop with a self-crossing in the origin of coordinates (8-shaped
loop) can be built according to the formulas (a=0...2m)

X(q) = {(20 - gj sgn(m-a)- AaSJ + b, sgn(77-a)
=rect a[x(z’a -Aa, - g] + bxj + (1 —rect a)[x(g -Aa, - 2aj - bxj,

(34)
y(a) = y[(Za ~ ]ET) sgn(m-a)- Aasj +b,sgn(7-a)

= rect a( y(Za -Aa, - gj + byj + (1 —rect a)( y(g -Aa, - 2aj - byj.

The loops (33), (34) have no appearance differences. By replacing rtwith
T/2 (a=0...T), double piecewise-linear loops are built by formulas (33), (34)



Examples of double hysteresis loops

Double (a) smooth, (b) piecewise-linear hysteresis loop formed by linking
two loops (a) Classical, (b) Play with Gain in the saturation point b




Pinching a loop in the origin of
coordinates

yla) '
1 a=0
aq = 0.14 (blue)
b, =10 .
sl Ly 10 Double non-self-crossing
" hysteresis loop of Propeller
Ay = 0° type formed by pinching a
o Aez=0" 4 - loop at the point of

of zero splitting a and a

0.5 - )
of / : phase shift Aa,

01 [ / coordinate origin by means




Triple hysteresis loops
c

A triple loop is assembled of three loops — one central loop and two
outside loops linked at the saturation points b (a=0...2m)

X(a) = (recta +rect(a - ))x (Scr—gj

+ (recta +rect(a - 1) - 1){X2(i 3a - —j (b, + by, )sgn(r- a)}
(35)

y(a) = (recta +rect(a - )y, 3a - j

+ (recta +rect(a - 77) - 1){ yz(i 3a - —j (b +b, )sgn(ﬂ— a)}

where x,(a), y,(a) are equations of the central loop; x,(a), y,(a) are
equations of the outside loops; b;,, b, are coordinates of the saturation
point of the central loop; b,,, b,, are coordinates of the saturation points
of the outside loops; recta=H(a)-H(a-1/3) is a /3-wide rectangular pulse.




Condition for triple loop assembling
-

When assembling loops (35), the condition y,= ) is usually met, where
Vi, ¥, are slope angles of tangents to the unsplit (a,=0) central loop and
the unsplit (a,=0) outside loops, respectively, at the saturation point b;.
The slope angles ), y of the tangents are defined by the formulas

—_ b1y
y, = arctan ,
n1b1X (36)
— b2y
y, = arctan :
n2 2X

In case the argument 3a of functions x,(a), y,»(a) in equations (35) is used
with the plus sign, a non-self-crossing loop is obtained, and in the case of
the minus sign — a self-crossing loop; both the loops have the same
appearance. Triple non-self-crossing and self-crossing piecewise-linear
loops are built by formulas (35) by replacing twith 7/2 (a=0...T).



Examples of triple hysteresis loops

2 A5 1 05 0 0.5 1 15 2%« 2 45 A 05 0 0.5 1 15 2%«

(a) (b)
Triple (a) smooth, (b) piecewise-linear hysteresis loop formed by linking three
loops (a) Classical, (b) Play with Gain in the saturation points b. In the linking
points, the loop can be made both non-self-crossing and self-crossing



Loops with arbitrarily long whiskers

Triple hysteresis loops (35) are useful for producing single smooth or
single hybrid hysteresis loops having long whiskers. The triple loop
consists of the central Tilted Classical loop and whiskers, which are
formed from a pair of the outside unsplit loops of Leaf type oriented at
the angle ). To obtain hybrid Classical loop with whiskers, the
following equations can be used (a=0...7)

recta + rect(a - %Dm [Sa -

recta +rect

Q
I

recta +rect

Q
|
M~ dH N[

recta +rect

Q
I

8
bZX)Sgl I( ; aj:|s

(37)




Examples of loops having arbitrarily
long whiskers

a=02
by, =1.0
b,=1.0

o5 0= 15

-1 05
81 =02
by =05 by, = 0.25
by, = 0.7 byy = 0.15
m1 =3
f’i»’ =3

6y =15°
j/1 = 31.00

1 05
_bfy

1 _p - -1
—‘1 ‘(I).5 ‘0 C;.5 1I§( @)
(a) (b)

Simulation of a single Classical (a) smooth, (b) hybrid loop with long whiskers
by means of a triple non-self-crossing hysteresis loop. Whiskers are the
outside pair of (a) smooth, (b) piecewise-linear unsplit loops of Leaf type




Squeeze causing a foldover

The triple self-crossing loops
are formed by setting up a
negative phase shift Aa, (or
positive Aa;) that “squeezes’
the loop so tight that a
foldover appears
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