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Key featuresKey features

The model is capable of approximating most of the known types of
rate-independent symmetrical hysteresis loops encountered in the 
practice. The model allows building smooth, piecewise-linear, 

hybrid, minor, mirror-reflected, inverse, reverse, double and triple 
hysteresis loops. The error of approximation of a hysteresis loop by 

the model does not exceed 1% as a rule
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With the original model, a family of hysteresis loops is described by 
the following parametric equations

Original modelOriginal model
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where α is a real parameter (α=0…2π); a is x coordinate of the split 
point; bx, by are the saturation point coordinates; m is a positive odd 

integer (m=1, 3, 5, …) defining the curvature of the hysteresis loop; 
n is a positive integer defining the type of the hysteresis loop and its 
curvature. With n=1, the Leaf loop type is formed; with n=2, 4, 6, …

– the Crescent (Boomerang), and with n=3, 5, 7, … – the Classical.

(1)
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Hysteresis loops supported by the Hysteresis loops supported by the 
original modeloriginal model

Hysteresis loops of Leaf 

(n=1), Crescent (Boomerang, 

n=2), and Classical (n=3) 

types. The area of all the 

three loops is the same
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Representation as a sum of an unsplit Representation as a sum of an unsplit 
loop and a splitting curveloop and a splitting curve
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(2)

Hysteresis loop (1) can always be represented as a sum of two 
parametric curves

where x1(α)=bxsinnα, y1(α)=bysinα is the unsplit loop;
x2(α)=acosmα, y2(α)=0 is the splitting curve.
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Representation as a sum of harmonicsRepresentation as a sum of harmonics
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The generating function x(α) can easily be expanded in the Fourier 
series

where the Fourier coefficients Ak, Bk for odd n are determined by the 

algebraic formulas
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is a binomial coefficient.( )[ ]!!! klklCk
l −=where
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Representation as a frequency Representation as a frequency 
spectrumspectrum

Having the Fourier coefficients Ak, Bk, the generating function x(α) 
can also be represented as
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where amplitudes Amk and phases ϕk of the harmonics are 
determined by the following formulas
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Loop tilting by rotation of the Loop tilting by rotation of the 
coordinate systemcoordinate system
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The required loop tilting by angle θ at the split point a is performed 
using the following transformations

(7)

Area S of the loop (7) is calculated by the formula
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Phase shifts Phase shifts ∆∆αα

Phase shifts ∆α1, ∆α2, ∆α3 permit us to tilt the hysteresis loop 

smoothly by the required angle θ at the split point a as well as to 
smoothly change the curvature of the loop
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where â , xb̂ are corrected parameters of a, bx, respectively.

The corrected parameters

(9)
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can be found by the formulasâ , xb̂
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Effects of the phase shifts Effects of the phase shifts ∆∆αα on the on the 
Classical hysteresis loopClassical hysteresis loop

(a) Tilting with phase shift ∆α1, continuous change in the curvature by 

phase shift (b) ∆α2, (c) ∆α3
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The Fourier coefficients The Fourier coefficients AAkk, , BBkk when when 
using the phase shifts using the phase shifts ∆∆αα
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Loop area when using the phase Loop area when using the phase 
shifts shifts ∆∆αα
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Note that the loop area depends on the amplitude and phase of the 
1st harmonic only; the rest of harmonics do not affect the loop area.
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Loop tilting and curving by skewing of Loop tilting and curving by skewing of 
the coordinate systemthe coordinate system
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Hysteresis loops can be tilted by skewing of the coordinate system by 

angle θ along the x axis and by angle κ along the y axis

The area of the skewed loop is calculated by the formula
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Tilting and curving of the Classical loop Tilting and curving of the Classical loop 
by skewing of the coordinate systemby skewing of the coordinate system

Tilting the Classical loop 

by skewing the 

coordinate system by 

angle θ along the x axis

Changing the curvature of the Classical loop 

by skewing the coordinate system by angle κ
along the y axis. Tilting the loop at the split 

point by angle (a) θ=15°, (b) θ=-15°
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PiecewisePiecewise--linear hysteresis loops built linear hysteresis loops built 
on trapezoidal pulseson trapezoidal pulses

Replacing the sine and the cosine in the generating functions x(α), 
y(α) of model (1) with unit-amplitude trapezoidal pulses trps, trpc, 
respectively, one can produce piecewise-linear hysteresis loops built 

on trapezoidal pulses
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where α=0...T; T is the pulse period.
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Trapezoidal pulsesTrapezoidal pulses

The trapezoidal pulses trp are defined as follows
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where d, D are the upper and the lower bases of the trapezoidal 

pulses, respectively (D=3d, T=d+D=4d); rect1, rect2 are rectangular 
pulses.
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Rectangular pulsesRectangular pulses

The rectangular pulses rect1, rect2 are determined by a step function 

H(α) (Heaviside function)
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PiecewisePiecewise--linear hysteresis loops built linear hysteresis loops built 
on trapezoidal pulseson trapezoidal pulses

Piecewise-linear hysteresis 

loop Leaf (Play without 

Whiskers, n=1), hybrid 

Crescent (hybrid Boomerang, 

n=2), and hybrid Classical 

(n=3) built on trapezoidal 

pulses. The area of all the 

three loops is the same



19

PiecewisePiecewise--linear hysteresis loops with linear hysteresis loops with 
phase shifts phase shifts ∆∆αα

Taking into account the phase shifts ∆α1, ∆α2, ∆α3, equations (15) 
are written as
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The corrected parameters are determined by the followingâ , xb̂

formulas
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PlayPlay--RelayRelay--Play, PlayPlay, Play--Play, PlayPlay, Play--Relay Relay 
loops with gain/attenuationloops with gain/attenuation

To obtain piecewise-linear loops with gain/attenuation γ, one should 
add to (18) an extra term (curve) responsible for gain/attenuation 
(m=n=1)
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PiecewisePiecewise--linear hysteresis loops Playlinear hysteresis loops Play--
RelayRelay--Play, PlayPlay, Play--Play, PlayPlay, Play--RelayRelay

Piecewise-linear hysteresis loops with gain/attenuation γ: (a) Play-Relay-Play, 
(b) Play-Play, (c) Play-Relay built on trapezoidal pulses using the phase shifts
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Whiskerless Play and NonWhiskerless Play and Non--ideal Relay ideal Relay 
loops with gain/attenuationloops with gain/attenuation

Whiskerless Play and Non-ideal Relay loops with gain/attenuation are 
built by the following equations
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where the loop parameters a, bx, by, β are interrelated as 
tanβ=by/(bx-a).
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Whiskerless Play and NonWhiskerless Play and Non--ideal Relay ideal Relay 
loops built on trapezoidal pulsesloops built on trapezoidal pulses
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Area of Play and NonArea of Play and Non--ideal Relay loopsideal Relay loops
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The areas of the simplest piecewise-linear loops (21) having a 
parallelogram shape are determined by the formula
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Whiskerless hybrid Classical Whiskerless hybrid Classical 
hysteresis loophysteresis loop

Whiskerless hybrid Classical loops with the desired slope β=π/2-θ at 
the split point are built according to the following transformation
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Whiskerless hybrid Classical loops having the required slope β at the 
split point, the required inclination (gain/attenuation) γ of the 

rectilinear section, and the required curvature κ of the curvilinear 
section are built according to the following transformation
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where k=2, 4, ... is an additional parameter to control the loop 
curvature.
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Hybrid Classical whiskerless hysteresis Hybrid Classical whiskerless hysteresis 
loops built on trapezoidal pulsesloops built on trapezoidal pulses

Hybrid Classical loops 

with the specified slope 

β=π/2-θ at the split point

Hybrid Classical loops with specified slope 

β=π/2-θ, gain/attenuation γ, and curvature κ. (a) 

Various gains γ for fixed β and κ, (b) various 

curvatures κ for fixed β and γ
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Area of hybrid Classical loopArea of hybrid Classical loop

(26)
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The area of hybrid Classical loop with non-zero gain/attenuation (24) 

is calculated by the formula

.4 yabS =

The area of hybrid Classical loop (23) is calculated by the formula

(25)
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Loops built on triangular pulsesLoops built on triangular pulses

Besides trapezoidal pulses trp, formulas (9) can operate with 

triangular pulses tri, which are particular cases of the trapezoidal 
pulses (d=0, T=D)
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The corrected parameters are determined by the followingâ , xb̂

formulas
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Triangular pulsesTriangular pulses

The triangular pulses tri are defined as follows

where rect are rectangular pulses.

The rectangular pulses rect are determined by a step function H(α)
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PiecewisePiecewise--linear hysteresis loop Leaf linear hysteresis loop Leaf 
built on triangular pulsesbuilt on triangular pulses

Piecewise-linear loop Leaf 

(bi-linear loop, Play without 

Whiskers) at different values 

of phase shift ∆α1 built on 
triangular pulses
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General expression for a piecewiseGeneral expression for a piecewise--
linear loops Play and Nonlinear loops Play and Non--ideal Relayideal Relay

The general expression describing a piecewise-linear hysteresis loop 
Play with Gain is as follows
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where αa=aT/(4bx) is the value of parameter α at split point a.

The upper base d of the trapezoidal pulses trps in (31) is determined 
according to the formula

(32)
( )
( ),tantan2

tan

γβ
β
−

−
=

x

yx

b

bbT
d

and the lower base D according to the formula D=T-d.
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PiecewisePiecewise--linear Play hysteresis loopslinear Play hysteresis loops
built on triangular pulsesbuilt on triangular pulses

(a) Play with 

Gain, (b) Play 

with Gain w/o 

Whiskers 

(parallelogram 

loop), (c) Play 

with Attenuation, 

(d) Play with 

Attenuation w/o 

Whiskers, (e) 

Play (backlash), 

(f) Play w/o 

Whiskers
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PiecewisePiecewise--linear linear RelayRelay hysteresis loops hysteresis loops 
built on triangular pulsesbuilt on triangular pulses

(g) Non-ideal 

Relay with Gain, 

(h) Non-ideal 

Relay with Gain 

w/o Whiskers, (i) 

Non-ideal Relay 

with Attenuation, 

(j) Non-ideal Relay 

with Attenuation 

w/o Whiskers, (k) 

Non-ideal Relay 

(Schmitt trigger), 

(l) Non-ideal Relay 

w/o Whiskers 

(rectangular loop)
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Double nonDouble non--selfself--crossing hysteresis crossing hysteresis 
looploop

The equations for a double smooth loop non-self-crossing in the 

origin of coordinates (0-shaped loop) are as follows (α=0…2π)

where sgnα=α/|α| is the signum function; rectα=H(α)-H(α-π) is 

a π-wide rectangular pulse.
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Double selfDouble self--crossing hysteresis loopcrossing hysteresis loop

The loop with a self-crossing in the origin of coordinates (8-shaped 

loop) can be built according to the formulas (α=0…2π)
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The loops (33), (34) have no appearance differences. By replacing π with 
T/2 (α=0…T), double piecewise-linear loops are built by formulas (33), (34).
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Examples of double hysteresis loopsExamples of double hysteresis loops

Double (a) smooth, (b) piecewise-linear hysteresis loop formed by linking 

two loops (a) Classical, (b) Play with Gain in the saturation point b
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Pinching a loop in the origin of Pinching a loop in the origin of 
coordinatescoordinates

Double non-self-crossing 

hysteresis loop of Propeller 

type formed by pinching a 

loop at the point of 

coordinate origin by means 

of zero splitting a and a 

phase shift ∆α2



38

Triple hysteresis loopsTriple hysteresis loops

A triple loop is assembled of three loops – one central loop and two 

outside loops linked at the saturation points b (α=0…2π)
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(35)

where x1(α), y1(α) are equations of the central loop; x2(α), y2(α) are 
equations of the outside loops; b1x, b1y are coordinates of the saturation 

point of the central loop; b2x, b2y are coordinates of the saturation points 

of the outside loops; rectα=H(α)-H(α-π/3) is a π/3-wide rectangular pulse.
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Condition for triple loop assemblingCondition for triple loop assembling

When assembling loops (35), the condition γ1= γ2 is usually met, where 
γ1, γ2 are slope angles of tangents to the unsplit (a1=0) central loop and 
the unsplit (a2=0) outside loops, respectively, at the saturation point b1. 

The slope angles γ1, γ2 of the tangents are defined by the formulas
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(36)

In case the argument 3α of functions x2(α), y2(α) in equations (35) is used 
with the plus sign, a non-self-crossing loop is obtained, and in the case of 

the minus sign – a self-crossing loop; both the loops have the same 

appearance. Triple non-self-crossing and self-crossing piecewise-linear 

loops are built by formulas (35) by replacing π with T/2 (α=0…T).
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Examples of triple hysteresis loopsExamples of triple hysteresis loops

Triple (a) smooth, (b) piecewise-linear hysteresis loop formed by linking three 

loops (a) Classical, (b) Play with Gain in the saturation points b. In the linking 

points, the loop can be made both non-self-crossing and self-crossing
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Loops with arbitrarily long whiskersLoops with arbitrarily long whiskers

Triple hysteresis loops (35) are useful for producing single smooth or 
single hybrid hysteresis loops having long whiskers. The triple loop 
consists of the central Tilted Classical loop and whiskers, which are 

formed from a pair of the outside unsplit loops of Leaf type oriented at 

the angle γ2. To obtain hybrid Classical loop with whiskers, the 
following equations can be used (α=0…T)
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Examples of loops having arbitrarily Examples of loops having arbitrarily 
long whiskerslong whiskers

Simulation of a single Classical (a) smooth, (b) hybrid loop with long whiskers 

by means of a triple non-self-crossing hysteresis loop. Whiskers are the 

outside pair of (a) smooth, (b) piecewise-linear unsplit loops of Leaf type
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Squeeze causing a foldoverSqueeze causing a foldover

The triple self-crossing loops 

are formed by setting up a 

negative phase shift ∆α2 (or 

positive ∆α3) that “squeezes” 
the loop so tight that a 

foldover appears
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Further readingFurther reading

� R. V. Lapshin, “An improved parametric model for hysteresis 
loop approximation”, Review of Scientific Instruments, vol. 91, 

iss. 6, no. 065106, 31 pp., 2020 (DOI: 10.1063/5.0012931)

� R. V. Lapshin, “Analytical model for the approximation of 
hysteresis loop and its application to the scanning tunneling 
microscope”, Review of Scientific Instruments, vol. 66, iss. 9, 

pp. 4718-4730, 1995 (DOI: 10.1063/1.1145314)
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Supplementary materialSupplementary material

� R. V. Lapshin, “Hysteresis loop”, Mathcad 2001i worksheets, 
ver. 03.01.2020

� R. V. Lapshin, “Hysteresis loop”, Readable Mathcad 2001i 
worksheets, ver. 03.01.2020

https://aip.scitation.org/doi/suppl/10.1063/5.0012931/suppl_file/r.v.lapshin_hysteresis_loop_mathcad_2001i_worksheets_ver.03.01.2020.zip
https://aip.scitation.org/doi/suppl/10.1063/5.0012931/suppl_file/r.v.lapshin_hysteresis_loop_readable_mathcad_2001i_worksheets_ver.03.01.2020.pdf
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