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I. INTRODUCTION 

The law of a closed hysteresis curve would emerge in 
many physical phenomena such as dielectric hysteresis [po- 
larization curve P =f(E)], magnetic hysteresis [magnetiza- 
tion curve B =f(H)], elastic hysteresis [deformation curve 
e=f(F)], and some others. 

This phenomenon is widespread and important, however 
a simple analytical equation that could approximate it with a 
sufficient degree of precision has not existed. Therefore, 
rather often when analyzing various processes and systems 
with a hysteresis element, the solution was being searched 
for either graphically-by using experimental data, or with 
the help of straight-line approximation of the curve.1’2 

The first method is inconvenient because of the need for 
table function representation and low precision of graphics. 
Low precision of the second method is caused by roughness 
of piecewise-linear approximation (certainly, if the number 
of the segments is not too great) and thereto it implies 
searching for the solutions at several intervals followed by 
“gluing” them with each other. 

Other methods of hysteresis loop approximation are 
known in both polynomial models2 and integral operators3*4 
classes. But their usage is limited because of the complexity 
of hardware support or great time of calculations. 

This work pursued two objectives. First, to give a de- 
scription of the suggested model and its properties and char- 
acteristics. The part of the paper devoted to this matter is of 
a wide, general scope inasmuch as the use of the model is 
considered for analyzing static nonlinearity of hysteresis 
loops of various types and physical nature encountered in 
many scientific instruments. Second, to highlight the ways 
and manners of practical application of the conclusions ob- 
tained from the model description to particular purposes, 
namely, for description and compensation of nonidealities of 
piezoceramic manipulator$-‘2 of a scanning tunneling micro- 
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scope (STM)-nonlinearity and ambiguity of static charac- 
teristic, piezoceramic creep, thermal drift. 

II. DESCRIPTION OF THE MODEL 

A. Analytical expression for hysteresis curve family. 
Formation of the types and their classification 

The family of hysteresis loops can be described by a 
generalized transcendental equation in parametric form as 
follows 

x(cr)=-fa cosm atb, sin” IY, 

y(a)=by sin LY, 

where a is the split point coordinate; b,, 6, are the satura- 
tion point coordinates; m, y1 are integer numbers (see Table 
I); a is a real parameter (--~=GcK<+~). 

Plus signs in Eq. (1) correspond to a hysteresis curve 
with saturation points in I, III quadrants [this is the case to be 
considered below) and minus signs in II, IV. Thus, the curves 
built with plus and minus signs would be symmetrical to 
each other relative to oy axis. 

Classification of the hysteresis loop types supported by 
the model is presented in Table I. Each type is ascribed with 
a status of either main or derivative. The main types are 
“leaf,” “crescent” [see Ref. 13), “classical” [Figs. l(a)- 
l(c)]. They are determined by the y1 coefficient. The m and n 
(p2>3) powers in Eq. (1) define the steepness (I,II,III 
curvesj. The derivative types are “tilted classical,” “double 
loop, ” “bat” [Figs. l(d)-l(f)]. They derive from main types 
or from other derivative types with implementing some extra 
operations. 

So, a curve of tilted classical derivative type [Fig. l(d)], 
as the tangent in inflection point of the unsplit loop makes an 
angle pf?rl;! with ox axis, can be built by rotating the co- 
ordinate system clockwise through the angle 6=~12-p. 
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TABLE I. Classification of hysteresis loops. 

No. Qpe 
Vpe 
status n m P Equation Figure 

1 Leaf Main 

2 Crescent 

3 Classical 

3 Tilted 
classical 

5 
Double 

loop 

6 Bat 

Main 

Derivative 
from type 

3 
Derivative 
from types 

1/3/4 
Derivative 
from types 

l/3/4 

1 h 
1 3 arctan -2 

5 bx 

1 
T 

2 3 
5 

2- 

1 
3 3 ir 

5 z 

a a 37 o.*.- 
2 

a a a 

a a a 

n(a)=a coP ruf h, sin” my, 
y(a)=by sin (Y 

or 

x(a) = b, cos” a- a sin” (Y, 
y(a)=b, cos a, 

occrs2rr 

~(n)=n(a)cos B+y(cu)sin 0, 
j(a)=-x(cr)sin B+y(ru)cos 8, 

O=(d2)-p 

;(cr)=s(n)ib,, 
~(a)=y(a)+b, 

i((Y)=x(a), 
j?a)=ly(Nl 

l(a)-1 
1 (d-II 
l(a)-III 

l(b)-1 
1 (b)-II 
l(b)-111 

1 (c)-I 
I(c)-II 
l(c)-III 

l(d) 

W 

10 

aDepending on the initial type. 
Thus, using the foregone formula for transformation of Car- 
tesian coordinates with the axes rotated,14 the following 
equation is obtained: 

i(a) =x( ajcos B+y(a)sin 8, 
(2) 

y((~)= -vx(ajsin ~+.Y(CX)COS 8, 

where X(a), y(a) are the coordinates of the rotated system. 
When rotating, the split point +a and the saturation 

point 51 b change their positions relative to the origin system. 
Therefore a preliminary distortion of their coordinates is 
needed to get these points to coincide with the originals after 
rotation. Here, the following transformation formulas14 will 
be used: 

cix=a cos 19 (31 

and 

b,=b, cos 0-b, sin 0, 

by=bS sin O+b, cos 8. 
(4) 

As a, b,, b, in Eq. (1) are substituted with the corrected 
value of split constant 5, and saturation constants ix, by, 
equations for x(a) and y(a) can be obtained, which are 
needed in calculations by formula (2). 

To build the models of more complicated hysteresis 
loops [e.g., double loops, Fig. l(e), which are a composition 
of l/3/4 type] or to simulate thermal drift processes or creep 
ef‘fect, the rectangular coordinate system should be shifted by 
the value of x0, y0’.14 Herein, the value of x0 is a bias 
voltage,5 and for creep and thermal drift, the value of y0 is a 
certain time function ~~=f(t).~-~ Thus, the shifted curve 
could be described as follows: 
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,qa)=x(a)fxg, 

(5) 

Y(aj=Y(aj+Yo, 

where the equations for x(a), y(a) are determined by the 
composition base type. 

To form a model of bat type [Fig. l(f)], it is sufficient to 
takti the moduIe of y(a). 

The direction of passing along a hysteresis loop is sup- 
posed to be determined in the following way.‘.’ For a coor- 
dinate lag system, the movement along the lower half of the 
curve’ is associated with the inequality dxldt>O, and along 
the upper half .with dxldt<O, the direction obtained being 
counterclockwise. For a coordinate lead system, the signs in 
those inequalities would be swapped (clockwise direction). 
When a parametrically set model is being considered, it is 
suitable to associate the positive (counterclockwise) direc- 
tion with increasing a parameter, and the negative one with 
decreasing. 

In the case of an unsplit hysteresis loop (a = 0); it is easy 
to pass from the parametric record over to an explicit func- 
tion definition 

y(x)= &f/ii, -bb,sx6+b,. 

By using expression (6), loops embedded into the limit cycle 
can be built. The procedure consists of the following (see 
Fig. 2): for bz chosen within the (- 6, ,b,) interval, the 
value of by” is being found by Eq. (6), which lies at the 
unsplit curve. Then, the embedded loop being assumed, at 
first approximation, as similar to the limit cycle, the value of 
split a* = abzlb, is being set and the curve is.being built 
using the parameters m,n, 6, of the limit cycle. In the general 
nalytical model for the approximation of hysteresis loop 4719 
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(d) 
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(e) 
FIG. 1. Hysteresislooptypessupportedbythemodel: (a)JLeaf(u=O.2;b,=O.6;6,=0.8;m=l,3,5;n=l; 8=O”);(b)crescent(n=0.2;b,=0.6;by=0.8; 
m=l,3,5; n=2; 0~0”); (c) classical (~~0.2; b,-0.6; b,=0.8; m= 1,3,5; n=3; o=O”); (cl) tilted classics (~=0.2; b,=O.fj; b,=O.g; m=3; a=3; 
0=15’); (e) double loop (u=O.l; b,=O.4; b,=0.4; m=3; n=3; 0=15”); (f) bat (u=O.2; b,=O.6; b;=O.fj; m=3; a=3; +l5o). 
case, instead of Eq. (6). any suitable function that passes 
through the points + b and the origin of coordinates can be 
used. 

To trace the history of motion, it should be done in the 
following way. First, the moment is defined when the sign of 
i. Instrum., Vol. 66, No. 9, September 1995 
derivative of the input signal is changing (this moment cor- 
responds to a saturation point of a particular cycle). Next, as 
the value of the CY parameter is known at that moment, the 
parameters t bz = x( cr), 2 b; = y(a) can be calculated. 
Then, as the law of disposal of particular cycles inside Limit 
Analytical model for the approximation of hysteresis loop 



FIG. 2. Embedded loops. Determination of spontaneous polarization value 
(a=0.2; b,=O.6; b,=O.S;m= 1; n=3; b: = 0.3). 

one is known, it becomes possible to define a” and f? pa- 
rameters. Finally, the a parameter is assigned the value of 
rrkl2;. where k=1,3,5,... Here are all the parameters 
needed to proceed with the motion along the new cycle. 

Beginning with m =3 and IZ = 1, function (1) cannot be 
resolved in explicit form y=f(x) because it would result in 
an equation of more than fourth degree. However, an explicit 
record can be obtained for me function, inverse to Eq. (l), 
which is yielded by simply swapping x(a) and y(a) 

x(a) = b, sin a, 

y(a)=a COP a+b, sin” a. (7) 

That inverse function will serve as the base for building a 
hysteresis compensation system. An explicit record for Eq. 
(7) can be given by 

y=~x”~~,~~, -b,sxG+b,. (8) 
Y Y 

Taking into consideration, on one hand, that the opera- 
tions of division and square root are not facile in hardware 
implementation, require much time of calculation, and are 
not typical in digital signal processor (DSP) algorithms and, 
on the other hand, the convenience of definition of the in- 
verse function and the contour pass direction, the parametric 
form (1) must be admitted to be the most suitable to be used 
further. 

6. Analysis of the curve: Coersitivity, remanent 
polarization, dielectric spontaneous polarization, 
induced piezocoefficients, value of saturation 

Function (l), which was taken as the model of hyster- 
esis, is a continuous, nonlinear, ambiguous, ~limited one de- 
fined on the r-b, ,b,] segment. Besides, this function is 
periodical with the period 271; since the following equalities 
are true: 

x(a)=x(a+2rk), 

yW=yb+2~W, 
(9) 
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where k= 1,2,3,... Owning to the property of periodicity of 
function (l), use of the model will prove to be most effective 
with cycle processes, e.g., in scanning systems (see Sec. 
III A). 

Let us find the zeros of function (1). Here, the value of 
the (Y parameter should be defined such that j(a) becomes 
equal to 0, i.e., b, sin cr=O, whence (Y= nk. Substituting this 
value of (Y in x(a), it will yield x = t a. Note that the physi- 
cal sense of a zero of function (1 j is coerditivity. 

Now, the coordinates of the +c point are to be defined 
as the intersection points of the loop and oy axis. The point 
tc defines the value of remanent polarization. Writing 

a COP a+b, sin” LY=O, 

b, sin LY= kc. (10) 

In the case of m = n, this will result in the following solution: 

+c= 
?b,, 

dl +(b,/a)2’“’ 
(11) 

The value of hysteresis H, is defined as clb,( 100%); 
by using expression (1 l), it can be written as 

Hy= 
100% 

41 +(b,la)2’m’ 
(12) 

Note, that the ratio b,la in expression (12) is none other than 
100%/H,, where H, is “hysteresis” along ox axis. Thus, a 
correlation is obtained that links the values H, and HI with 
each other (m = n) 

(‘fy (%)“I- 1. (13) 

Let us find the coordinate of the c’ point (see Fig. 2). It 
is the intersection point of the oy axis and bd tangent drawn 
through the saturation point of the unsplit curve (6). Note 
that the point c’ defines the value of dielectric spontaneous 
polarization. The equation for the bd straight line is given by 
y = kx + c ’ , where k = tan y. The derivative k = dyldx of the 
unsplit curve (6) in the point x= b,r is defined by b,l(nb,). 
From the equation for the bd line with x = b, , y = b, , taking 
into account the found k value, the value of C’ is defined as 

c’=by 1-i. 
( i 

(14) 

It will be shown (not rigorously) that function (1) is odd 
(except for crescent type). By definition, a function y =f(x> 
would be odd provided f( -x) = -f(x). .In regard to func- 
tion (1) p 

-x(h)=-(a COP a+b, sin” a), 

-y(a)= -by sin (Y. (15) 

Using the identities -sin cr=sin(-cr), cos cr=cos(-a), mak- 
ing a formal replacement of the -a parameter with l, and 
considering the oddness of m and n as well as the fact that 
the sign of the split parameter a in formula (1) defines only 
the beginning point and the curve pass ,direction and, there- 
fore, can be chosen as negative here, the following state- 
ments can be formulated: 
nalytical model for the approximation of hysteresis loop 4721 



-x(b) = a COP l+ b, sinn 5, 

-y(l)=b, sin 5. 

Thus, the right-hand parts of the equations in (16) have no 
changes beside those in Eq. (1); consequently the function is 
odd. As the graph of an odd function is symmetrical relative 
to the origin of coordinates, the information of a half is suf- 
ficient to have the whole function set. The property of sym- 
metry of function (1) gives the opportunity, for example at 
estimating the approximation error (see Sec. II E), to carry 
out the calculations at a half of the domain. 

Let us find first and second derivatives of function (l), 
which in case of a parametrically set function are given by14 

dY 3(a) -=- 
dx X(a) (17) 

and 

d’y i( a)j(a) -i( ct)j( n) 
z= i( ff)3 , (18) 
Expression (23) allows for calculating the induced pi- 
ezocoefficients of a hysteresis curve in ,the coordinates of 
displacement versus electric field strength as well as the dif- 
ferential magnetic permeance at any point of the curve 
.B=f(H). ” 

By analyzing expressions (23) and (24), it can be shown 
that for m = 1 function (1) reaches its maximum value in the 
point ( + b, , + b,) and minimum-in the point ( - b, , - br). 
For ail m# 1, the lower and the upper parts of hysteresis 
loop’ (1) are monotonously increasing functions, therefore at 
the edges of the domain, i.e., in the points I!Z b, , function (1) 
has the greatest ‘+ b, and the least -b, values. Thus, the 
( %  b, , + by) points of curve (1) are the saturation points of a 
hysteresis loop. 

C. Square of a loop 
.) 

Physically, the square of a hysteresis loop characterizes 
the heat losses that cause heating of the material and, there- 
fore, define its efficiency coefficient. To find the square S of 
a bop, the following integralI should be calculated: 

x(a) g-y(a) $ dq (25) 

then taking into account expressions (l), (19), and (21), writ- 
ing 

s=; 
J- 

2.n 

n [( 
a cosm a+bx sin” cu)b, cos a-b, sin cr 

X(-am sin a cosmml a+b,n cos a sin’-*.cw)]da. 

CW 
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where i((~)=dx/da#O, .;C.(~~)=d~xldc?, j(n)=dylda, 
j;(a) = d”yldcu” are first and second derivatives of the func- 
tions X( a)) and y ( cuj by cr parameter, respectively. For the 
function being considered 

i( CY) = -am cosm CY tan CY+ b,n sin” ‘a cot cr, (19) 

,?(~~)=am COP o$(m- 1)tan’ CY- l]+b,n 

Xsin” Lt[(n- 1 jC0t2 a- 11, CQ 

j(a)=b, cos LY, 

j(a)= -I?, sin a. 

In accordance with Eq. 

iw 
G3 

(17), the first derivative is defined as 

dy b, cos .CY 

dx= -am sin LY cosm-t ff -I- h,n cos ff sir?-’ (Y (23) 

and, in accordance with Eq. (18) after simple transforma- 
tions, the second derivative is defined as 
I 

d2y 
z= 

abym(2-m)sin2 (Y ~0s.“‘-’ a+abym cos”‘+t cu-b,b,n(n- 1 jsin”+’ CY cot3 CY 
(-am sin (L cos”-t cr+b,n cos a sinn-* a’)3 

(24) 
Opening the parenthesis, grouping up the terms, then using 
De Moivre’s expansion’4 of cosm’ ’ CY and CO?-’ a, and 
solving the integral for odd n, the hysteresis loop square (26) 
will be given by 

(27) 

where Cf=I!l[k!(l-- k) !] are binomial coefficients. Thus, 
the square of leaf and classical hysteresis loops would not 
apparently depend on the saturation value by x coordinate 
and is only determined by the split constant and the satura- 
tion value by y coordinate. 

Formula (27) is applicable to odd n, but the coefficient PZ 
itself does not participate in it explicitly. Therefore, the fol- 
lowing theorem can be formulated: the quantity of the heat 
produced by the piezomanipulator for a cycle is the same for 
hysteresis loops of both leaf and classical types, provided the 
values of m, a, b, involved are the same. 

Since the square of a geometrical figure would be invari- 
ant to rotation, by substituting a and b, in formula (27) with 
their corrected values Gb and b,, [see Eqs. (3) and (4j], a 
formula can be written to define the square of tilted classical 
hysteresis loop 

s= ; clnm,:‘u2.+m( c-m-l’ WA cy12) 
[ 1 1 

~ .p+l 

Xrra[b, sin 28+b,(cos 28+1)]. CW 

As the terms containing the m coefficient are considered 
at various values of m  in formulas (27), (28), it can be con- 
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eluded that with fixed values of the rest model parameters 
the inequality Snr=5CSm=3<Sm=l is true, which is seen 
well in Figs. l(a) and l(c) (curves I, II, III). Thus, the greater 
the nt parameter is, the less heat the piezomanipulator pro- 
duces. 

For example, with m = n = 3 (0=0) the losses of heat 
will be determined by the hysteresis loop square of 
S= $rab,. Note that with the product of a by b,, equal to 
4/(3~), the hysteresis loop square becomes equal to unit. 

D. Harmonic linearization coefficients. The 
harmonically linearized transfer function of a 
hysteresis element 

Let the linear part of a nonlinear hysteresis system have 
the property of a low-pass filter, i.e., transmit the first har- 
monic with practically no losses and considerably attenuate 
all the others, which have been produced by a nonlinear el- 
ement under x( wt) =A sin(wt) input harmonic action. When 
analyzing such a system, the method of harmonic lineariza- 
tion can be applied, in accordance with which the hysteresis 
function y =f(x) would be given in the following form:“2 

(29) 

where 

q(A) = & 
I 

;?[A sin c~)sin CY da, 

4(A) = -& I ,z ; ,A 

(30) 
sin a)cos a da, 

are the coefficients of harmonic linearization ((Y= wt); p de- 
notes the differentiation operator (p = dldt). 

Let us define the harmonic linearization coefficients n 
q(A), q(A) for the inverse function (7). This function obvi- 
ously matches the conditions of the task under consideration. 
At that, the input harmonic signal x(a) is given by b, sin cy, 
and f(b, sin o&-by a co,?’ a+ b, sin’ (Y (here, instead of A 
amplitude, the denomination 6, is involved), then in accor- 
dance with formula (30) writing 

db,) = -$- I 
277 

(a COP cz+bx sin” a)sin ada, 
1’ 0 

WY) = 2 
I 

211. (31) 
(a COP a+b, sin” CX)COS adcu. 

Y 0 

By solving the integrals in Eqs. (3 1) similarly to Eq. (26) 
for odd n, the coefficients of harmonic linearization of the 
inverse function (7) are given by 

db,) = 
CF++l’)‘2b x 

2nby ’ 

cn2++ll 112, (32) 

ti(b,)= .,,nb * 
- Y 

In accordance with formula (29), the linearized equation 
for the hysteresis loop inverse function becomes the follow- 
ing: 
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FIG. 3. Graphs of q(b,), $b,) harmonic linearization coefficients 
the nonlinear hysteresis element (a=0.2; b,=O.8; m=n=3). 

y= 

vs b, for 

(33) 

and the transfer function W-l(b, ,s)= Y(s)lX(s) becomes 

4@,) 
W-‘(b,,s)=q(b,)+-s= 

&$+I’ )/2b 
x+ 

c;++l’ wa 

w 2nby 2”bp ” 
(34) 

Now, the required harmonically linearized transfer func- 
tion of a hysteresis element (1) is to be found as an inverse 
function to Eq. (34), i.e., W( b, ,s j = I/W- ‘(b, ,s) . Note that 
at that, the input amplitude will not be 6, but 6, instead. 
Finally 

W(b, J) = 
2m+nbyw 

2nC$!!11)‘2as + 2”Cr!11)‘2b,o * 
(35) 

By substituting s=je~ in Eq. (35) (where j is imaginary 
unit), the amplitude-phase characteristic of a hysteresis ele- 
ment will be given by 

W, J4=Wbx> 
2’mfnC~~~1j/2b,b,,-j22nfmC~~,‘)“aby 

= 2211( C~++~1)/2j2a2+ 22m( C~,+,“/2)2b,2 ’ 

(36) 

which only depends upon 6, amplitude and does not upon w 
frequency. Since W(b,) =q(b,) +jG(b,), from Eq. (36) 
comes the next 

22m+nCll;+11)/2b b 
4ibJ= 22rztC(m+~ r2 2 2 

5 y 
m+l ) ) a +22m(C$+l*)‘2)2be;’ 

22n+mcc$++,i1)r2uby (37) 

4(bJ=- 22ncC(m+1v2 2 2 2’ 

which are the required harmonic linearization coefficients of 
function (1). For the case of m = n = 3, coefficients (37) are 
given by q(b,)=4b,b,l[3(a2+b~)] and {(b,)=-4abyl 
[3(a2+bf)]; their graphs are shown in Fig. 3. 
Analytical model for the approximation of hysteresis loop 4723 



The coefficient q(b,) determines the steepness. of the 
averaging line. From formula (37), it is easy to see that with 
the amplitude of input harmonic signal b, increasing, q(b,) 
approaches zero since in that case nonlinearity (1) gets satu- 
rated. 

The amplitude of first harmonic A(b,) = [ W(b,) 1 can be 
defined by the transfer function (36) as 

A(.b,) = h&-4 + Li2!b,> 
3min c by 

= J22n(C~~f1)/2j2u2+22m(C~~,1)/2)2bx2 (38) 

and its phase cp(b,) =arg W(b,)-as 

ci(bx) yp+ 1)1Zu 
cp( b,) = arctan q0 = - arctan m+1 

2”CI(“,+,‘)‘2), . (39) 
I 

For example, the phase shift of first harmonic at the output of 
classical nonlinear element shown in Fig. l(c), curve II will 
make - 18.4”. 

The minus sign in expression (37) for G(b,) [this coef- 
ficient is placed by the derivative in formula (29)] as well as 
the minus sign in Eq. (39) mean that the presence of a hys- 
teresis element results in a phase lag of the output signal 
beside the input one. As is derived from Eq. (39), the wider 
the hysteresis loop is (the greater the split parameter a), the 
greater the phase shift becomes. 

By analyzing expression (39), it can be shown that the 
following theorem would take place: with the same values of 
m, a, and b, , minimum phase shift would occur at the leaf- 
type loops, and at that I’P~=~I<I(P~=~~<Iso~=~I. Note here 
that it is the very type encountered in STM piezomanipula- 
tors [see Fig. 4(a) and Refs. 5, 9-121. 

The harmonically linearized transfer function (35) of a 
hysteresis element having been defined, the further analysis 
of an automatic control system should be carried out by em- 
ploying the existing theory of linear systems in order to de- 
fine its stability, precision, and quality of transient process. 

E. Estimates of approximation error 

The error of approximating the experimental character- 
istics of hysteresis loops will be estimated by calculating the 
following quantities 

(1) Maximal absolute approximation error 
A= max I.v,W-Y,(~I, (40) 

OSXSb x 
where y,(x) are the model data; y,(x) are the experi- 
mental data. 

(2) Maximal relative approximation error 

A= max 
lY&) --Ycml 

OSxGr lY,““l 
loo%=& lOO%, (41) 

where y,“” = b,r is the y coordinate of the saturation point 
of experimental curve. 

(3) Average relative approximation error 
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(4) Quadratic mean approximation error (cr) 

The results of definition of the model approximation error of 
experimental hysteresis characteristics are presented in Table 
II, where the type and the parameters of a model are given. 

F. The procedure of definition of model parameters 
by limit cycle 

For building the model, the six parameters must be ex- 
tracted from the experimental dependence: a, b, , b, , m, n, 8 
by the folIoWing algorithm. 

(1) By the shape of the curve, its type is being identified (see 
Table I). If the type proves to be derivative, then the 
main type is being identified, from which the derivative 
type has derived. When the type is known, the value of 
parameter IZ and the kind of equation become known, 
also. 

(2) If the type is identified as tilted classical or as its deriva- 
tives double loop or bat, then by the graph of experimen- 
tal dependence, the angle 8 is being defined. 

(3) Provided that in a vicinity of the saturation point the 
curve behaves the way shown in Figs. l(a)-l(c) graph I, 
it means that m = 1; and if like in graphs II, III (the same 
figure), then m> 1. 

(4) By the experimental dependence, the coersitivity value a 
is being defined. 

(5) By the experimental dependence, the b, and b, coordi- 
nates of the saturation point are being defined. If the 
model is of leaf type, then the angle p can be calculated. 

(6) If the model type is double loop, then the displacement 
values b, , b, are being defined by the experimental de- 
pendencies. 

(7) By varying the coefficients m (if only m # l-see item 
3) and YE (if only n # 1 -see item 1) and, within a small 
range, the value of 6, angle (if only the type identified is 
not leaf or crescent) and using the estimates of Sec. II E, 
the minimal value of approximation error is being 
achieved. 

III. APPLICATION OF THE MODEL 

The hysteresis compensation eiements (HCE), as they 
are inserted into the STM control system, are generally 
shown in Fig. 5. The compensation system described below 
relating to the class of open-loop systems, its HCE elements 
are serial nonlinear correcting units which could be realized 
in either hardware (in analog or digital embodiment) or soft- 
ware. 

In order to compensate the hysteresis effect in all the 
three ways of realization, the function inverse to Eq. (1) will 
be employed so that to have the identity fCf- r(X)) = X work 
(here, -1 designates an inverse function). In terms of the 
system being described, the source functionf is the piezoma- 
nipulator static characteristic approximated by Eq. (l), and 
the inverse function f- ’ is function (7) synthesized by the 
Analytical model for the approximation of hysteresis loop 
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FIG. 4. Accuracy  of approx imat ion:  I -mode l  data: I I -exper imental  data. 
(a)  D isp lacement  of S T M  P Z T  X , Y  p iezomanipu la to rs  vs app l ied  vo l tage 
(leaf; a=32.6 ;  b ,=300;  b ,=955;  m = 3 ;  n =  I: p=72 .6”; H, -11%;  (6)  
=1 .5%) ;  (b)  ce ramic  polar izat ion vs electr ic f ield st rength (Ref. 15 )  (t i l ted 
classical ,  a = S 4 ;  b ,=  130;  b,=36.4;  t -n= 1; n=3 ;  8=27 .7’; (4=6%) ;  (c)  
ce ramic  polar izat ion vs electr ic f ield st rength (Ref. 16) ;  (t i l ted classical ;  
u = V O ; b ,=340;  b,=39.6;  m = 5 ;  a=3 ;  1 9 = 3 0 ’; (6 )=4 .1%) ;  (d)  ce ramic  
polar izat ion vs electr ic f ield st rength (Ref. 16 )  ( leaf; u=180 ;  b ,=195;  
b,=63.8;  r n =  1; n =  1; p=18.1° ;  (s )=3.9%);  (e)  ce ramic  polar izat ion vs 
electr ic f ield st rength (Ref. 16 )  (t i l ted classical ;  c l=  122.5;  b ,=341;  
b,=23.2;  m =  1; n=3 ;  .9=14”; (5 )=2 .7%) .  
H C E  e lement .  T h e  inverse funct ion a rgumen t  X  is a  contro l  
s ignal ,  for examp le  “X In” scan signal ,  wh ich  u n d e r g o e s  p re-  
l iminary distort ion in  the H C E  a n d  then  is appl ied,  th rough  a  
h igh  vo l tage ampl i f ier  (HVA) ,  to the p iezomanipu la tor .  Thus,  
the resul t ing d isp lacement  of the man ipu la to r  wil l  cor re-  
s p o n d  to the input  funct ion of the scan.  
A . Compensa t ion  of raster  distort ion in  the S T M  scan 
uni t  

T h e  f low chart  of the hysteresis compensa t ion  uni t  is 
s h o w n  in Fig. 6(a) .  T h e  s c h e m e  is bui l t  o n  a n a l o g  e lements  
a n d  consists of the fo l lowing units: G E N  s inusoida l  gene ra -  
tor; a  channe l  of M U L  mult ip l iers that carr ies out  the ope ra -  
m o d e l  for the approx imat ion  of hysteresis loop  4 7 2 5  
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TABLE II. Results of calculation of the approximation error. 

Source of 
experimental 

data and figure 

Fig. 4(a) 

Type of model and its 
parameters: 

a;b, ;b, ;tn;n;O” or p” 

Leaf 
32.6;300;955;3;1;72.6 

A m 

49.5 5.2 I .5 20.5 

Ref. 15, Fig. 4(b) TiIted classical 5.4 14.8 6.0 2.8 
54:130;36.4;1;3:27.7 

Ref. 16, Fig. 4(c) Tilted classical 3.3 8.3 4.1 I.9 
90;340;39.6;5;3;30 

Ref. 16, Fig. 4(d) Leaf 9.0 14.1 3.9 3.2 
180;195;63.8;1;1;18.1 

Ref. 16, Fig. 4(e) Tilted classical 1.7 8.1 27 0.9 
L22.5;341;23.2;1;3;14 
tion of raising the input oscillation sin( wt) to m and n pow- 
ers; PS phase-shifting element that converts the sin”(wt) 
oscillation into co?(wt) by shifting it by a quarter of the 
period; AMP2, AMP3 operational amplifiers with the gains 
K=a and K=b,, respectively; SUM summing amplifier; 
AMP1 amplifier with the gain K =b, ; COMP comparator, 
and AS analog storage unit. The last three components of the 
scheme are destined to set the accordance between the 
“XIn” input scan signal and the parameter a = wt by succes- 
sive approximation [such embodiment is simpler than an ex- 
plicit calculation of the function arcsin(X(t)lb,)]. 

In fact, the scheme implements the calculation of the 
inverse function (7). Its operation principle is clear with no 
extra elucidation, to only point out that, to ensure the condi- 
tion of in phaseness, the SCAN unit forming the scan works 
out an “XStart” signal at the beginning of each half-period 
of the scan, which starts the waiting generator GEN so that it 
would generate the proper half of the sine function accord- 
ingly to the sign of the scan signal derivative [the probing 
frequency of GEN is much greater than the frequency of the 
scan signal X(t)]. Pay attention to the triangle (not ramp) 
impulses of the scan signal shown in Fig. 6(a), the circum- 
stance pointing .out to operation with no idle stroke. 

Let us show now what the scheme of the HCE element 

FIG. 5. HCE hysteresis compensation elements included in STM control 
system. 
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will look like in case of a circular scan microscope. Note that 
a circular scan is more preferable beside a raster scan for the 
following reasons: the design of X and Y manipulators 
proves to be symmetrical, an even employment of the ma- 
nipulators occurs during the operation, the scan grows 
smoother and to those the possibility appears of getting the 
additional features of the microscope which have been de- 
scribed in paper.t7 As a disadvantage of a circular scan, there 
can be admitted the necessity of converting the points of the 
circle into a conventional rectangular display window when 
visualizing. 

To have a circular scan, it is necessary to apply a sin(wt) 
voltage to the X manipulator and cos(wt) to Y. Let us, in- 
stead of the triangle voltage [see Fig. 6(a)], mentally apply 
the X(t) = 6, sin a voltage, where LY= wt. It can be easy to 
see that the chain of units-AMP1 amplifier, COMP com- 
parator, and AS analog storage unit-becomes out of use 
and, therefore, can be excluded from the scheme. Now, in- 
stead of the triangle voltage. Y(t), let the voltage 
Y(t)= b, cos a-be applied (structurally, X and Y channels 
are identical). Since a cosine function would outstrip a sine 
at ?Tl2, formula (7) can be given by y(a) 
= a cosm( a + 74 2) + b, sin”( CL + 7r/2), whence the inverse 
function can be written in another record 

x(aj=by cos a, 

y( a)=bx CO? a-a sin” CY, 

which can be used abreast with Eq. (7). From the last rea- 
sonings, it can be concluded that the circular scan generation 
scheme with simultaneous hysteresis compensation will take 
the outline presented in Fig. 6(b), where SUB is an opera- 
tional amplifier connected in a differential mode. If compar- 
ing Figs. 6(a) and 6(b), the decrease of hardware expendi- 
tures can be revealed with the circular scan implementation; 
note that the parameter b,, becomes unnecessary. The circular 
scan scheme described here would serve as the base for 
building cycloid and spiral scans. 

The units of hysteresis compensation described above 
are the simplest ones and, generally speaking, do not permit 
us to work with loops of derivative types or various image 
sizes either to shift the image window along the scanning 
Analytical model for the approximation of hysteresis loop 
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FIG. 6. Flow chart of analog device for hysteresis compensation for the cases of: (a) raster scan; (b) circular scan. 
field or to implement vector access to a surface point. A 
hardware realization of the features mentioned above would 
result in a substantial complication of the equipment. The 
way out could be to build a digital system or to compute the 
model by a program. 

‘4 digital hysteresis compensation system will be de- 
signed by using the structures and the conclusions yielded 
while synthesizing the analog system. So, for the schemes 
presented in Figs. 6(a) and 6(b), the analog multipliers MUL 
and the operational amplifiers AMP1/2/3/4 should be re- 
placed with digital multipliers: the summing operational am- 
plifier SUM and the differentiating amplifier SUB-with an 
arithmetic-logic unit; the analog storage unit AS-with a 
strobed register with a digital-to-analog converter (DAC) 
connected up to its output; the sinusoidal generator GEN- 
with a read-only memory (ROM) scheme with a sine table 
written down in it; the analog comparator COMP-with a 
digital one. A ring counter should be connected to the ROM 
address inputs. The function of the phase-shifting element PS 
consists of shifting the value of the address worked out by 
the ring counter so as to skip exactly a quarter of the period 
of sine in the ROM table. 
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At program realization of the model, the functions 
cosm a, sin” a are stored in the computer data memory as 
some table structures. The scan voltage can be transformed 
into the corresponding CY value by either successive approxi- 
mation (similar to the operation of the unit chain AMPl- 
COMP-AS) or immediately by an arcsin table also kept in 
the data memory, or by directly calculating the arcsin by the 
foregone identityI 

fit) 
arcsin - = 

t @it) 

by I oJijqq’ 
where .f(t) is a scan function ([f(t) 1 <by) . At a half-period 
of the triangle scan, f(t) is given by kt. So, by passing from 
the integral over to a sum the following expression for ar is 
obtained 

N-I 
a=kAtx 1 

i=O 17’ i45) 

where N is the number of the samples taken; At = tlN is the 
time discrete. 

.The calculation of the model could be fulfilled at a uni- 
versal processor but most effectively this task could be re- 
nalytical model for the approximation of hysteresis loop 4727 
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FIG. 7. Flow chart of digital device for hysteresis compensation (soft- 
hardware realization). 

solved at a DSP because the operation AB,+C (where 
A,B, C are real numbers) is encountered in the calculations 
which is typical of DSP algorithms. Here, A=a, 
Bi=COSm sir C=DEjfF, and D=b,, Ei=sinn ~j, F=O. 
The indexes i and j refer to the addresses of the memory 
cells where the tabulated values of cos” CY~ and sin” ‘Y~ are 
contained, respectively. 

The flow chart of a hysteresis compensation digital unit 
is shown in Fig. 7. This unit is realized on a soft-hardware 
base and ensures working with all the hysteresis types and 
performing a scan along an arbitrary trajectory so as to sup- 
port any scan type, to carry out rotation of the scan window 
around oz axis (in order, e.g., to reduce moire distortionj as 
well as to vary the window size and shift it within the scan 
field. 

A ring programmable counter PCT2 is involved in the 
scheme which, in the rate defined by the “Clock” signal and 
the division coefficient “DC,” generates the address 
“Addr2” and the read signal “Read2” for the Dual-Port 
RAM (random-access memory) scheme with the model data 
written in it. From the RAM output, the “MData2” code, 
which corresponds to the preliminary distorted current value 
of raster voltage, comes into the DAC from where the signal, 
after having passed through a high voltage amplifier, is ap- 
plied to the manipulator. Another RAM port is intended for 
writing the model data “MDatal” calculated by the micro- 
computer processor. The use of a dual-port RAM permits us 
to get the processes of calculating the model and generating 
the control signal for the manipulator coincided in time and, 
therefore, to increase the unit fast acting. 

Built on a dual-port RAM base, the scan subsystem is 
capable of being transformed from synchronous into asyn- 
chronous. To do that, it is sufficient, instead of the “Clock” 
signal, to apply a signal pointing out to readiness of the data 
in the tunnel junction stabilization system.‘* Besides, if that 
system also uses a dual-port RAM as a Z-Buffer, then for the 
next memory cell sampling, the “Addr2” signal generated by 
the PCT2 counter can be used. Thus, there can be seen a 
good mutual coordination in work between the tunnel junc- 
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tion stabilization system and the scan signal generation sys- 
tem. 

It is appropriate to note that when using the scan modes 
that require frequent changing the model parameters a, b,, 
b, (e.g., in order to change the image size), in a certain 
operation time, some error will have been accumulated in the 
model. At the moment when it reaches a certain threshold 
defined by the admissible approximation error, a compulsory 
correction must be done: for the model it is assigning 5-12 to 
the Q! parameter and for the piezoelement-applying the 
saturation voltage to it so as to ensure it set at a fixed point of 
the limit characteristic-the saturation point. 

IV. EXPERIMENTAL RESULTS 

The surface image of a test pattern is shown in Figs. 8(a) 
and 8(c), which was taken by a STM when scanning with 
idle stroke and without, accordingly. As the test pattern, a 
diffraction grating with 0.3 ,ccm period coated with gold was 
used. Since the grating structure changes along one direction 
only and scan piezomanipulators, because of hysteresis, in- 
troduce distortions along two directions, then for reflecting 
these distortions on the image taken, the test object was fitted 
up so that its stripes would make an angle of some 45” with 
the manipulator X axis. 

On the images, the distortions of the test pattern are seen 
well, which consist in curving the stripes and changing their 
width from one stripe to another [Fig. 8(a), cf. Ref. 111, 
splitting the stripes and formation of a double-sided comb- 
like structure [Fig. 8(c)], as well as parallel stripes looking 
like divergent ones [Fig. 8(e), cf. Ref. 121. 

Figures 8(b) and 8(d) present the corrected images of the 
same area that were taken using the hysteresis compensation 
system shown in Fig. 7 [the model parameters were extracted 
from the data presented in Fig. 4(a)]. A visual comparison of 
Figs. S(a) and 8(b) [8(c) and 8(d)] will show that nonlinear 
distortions caused by hysteresis of manipulator piezoceramic 
are practically removed. 

Hysteresis loops with parameter m equahng to unit 
would have a section of negative derivative [see Fig. 4(d)]. 
The behavior of piezomanipulator at that part of the curve is 
similar to creep: on achieving e point the voltage begins to 
decrease, the displacement still increasing for a certain time 
until the point b is reached. [The parameter (Y that corre 
sponds to e point can be found by setting the denominator in 
Eq. (23) equal to zero.] From works,7p8 it is known that creep 
would cause distortions at the image boundaries where the 
tip motion is reversed (e.g., straight lines would get hooks at 
the ends). Distortions of the same kind would appear when a 
piezomanipulator with the hysteresis loop said above is ap- 
plied. Thus, the resulting picture wilI contain distortions of 
true creep and hysteresis mixed up together. 

V. DISCUSSION 

The approximating model suggested belongs to the real 
time model class. It allows for compensation of the STM 
piezomanipulator nonidealities such as nonlinearity and am- 
biguity, which makes it possible to get rid of the image dis- 
tortions (see Fig. 8 and Refs. lo-12), which is especially 
Analytical model for the approximation of hysteresis loop 
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FIG. 8. 128X 128 STM scan of the same 1X1 pm’ area of test pattern 
surface (diffraction grating with 0.3 pm period coated with gold) (a),(c) 
Surface image data obtained by scanning with and without idle stroke, ac- 
cordingly (the test object has been rotated by 45” counterclockwise), the 
hysteresis compensation system turned off. (b),(d) Surface image data cor- 
responding to (a),(c) obtained with the hysteresis compensation system 
turned on. (e) Surface image data obtained by scanning with idle stroke (the 
test object has been rotated by 4S’ clockwise). After compensation of hys- 
teresis, the image will look like the one shown in (b). 
important with great scans, to refuse the idle stroke in the 
raster scan, and consequently to reduce the scanning time; in 
addition, the model supports the mode of direct access to a 
desired point. Therein, the reconstruction of the true image is 
available for either preprocessing (preliminary distortion of 
the scan trajectory) or post-processing of the distorted image 
taken. 
As was shown in Sec. II C, the Q quantity of the heat 
produced by the piezomanipulator for a hysteresis cycle t 
determined by the system timer or by the scan frequency can 
be easily calculated, for instance, by formula (28). The val- 
ues Q and t might serve as the input data for some model 
considering the heat exchange proceeding among the STM 
construction elements. After having defined the difference in 
Analytical model for the approximation of hysteresis loop 4729 



 

the manipulator temperature AT by using such model, the 
difference in the manipulator length A1 can be found by the 
formula 

Al=@AT, (46) 

where p is the heat expansion coefficient ( 1 IK) ; 1 is the 
initial manipulator length (m) . Calculated in such a way, the 
thermal drift AZ can be compensated in the scan unit by 
properly shifting the scan window. Thermal drift compensa- 
tion is especially important in a scan device since there is not 
any active servo system mounted in it. Note that the STM 
heat processes, depending much upon construction features 
of the microscope and the materials used,’ are of a rather 
complicated nature and deserve a special investigation which 
comes out of the limits of this paper. 

The main advantage of the model, its simplicity, is called 
forth by no need of calculating the parameters-they are 
taken right from the experimental curve, neither the inverse 
function is to be calculated. To that, the model parameters 
make clear physical sense and have a simple geometrical 
interpretation. A distinctive feature of the model is the pos- 
sibility of comparing different hysteresis loop types with 
each other (see theorems in Sets. II C and II D). 

As a drawback of the model, there could be mentioned a 
restriction on the approximation accuracy to be achieved, 
i.e., its dependence upon the particular shape of the hyster- 
esis curve. Though, the reverse task could be apparently re- 
solved, the piezoceramic hysteresis curve being adopted to 
the desired model by changing the technological parameters, 
namely, the chemical composition, the baking and cooling 
conditions, the mechanical influences, etc. 

Owing to application of the model, it becomes possible 
to linearize the STM tunnel junction stabilization system 
contour by methods similar to those described in Sec. III A, 
which allows us to prevent the appearance of auto- 
oscillations and to get rid of distortions in 2 direction,* al- 
though the method that was used in Ref. 18 must be admitted 
as the most acceptable solution here. 

When measuring the frequency characteristic of Z ma- 
nipulators, an auxiliary piezoelement is often employed, 
which is supposed to modulate the tunnel junction at a har- 
monic law. With this method, if a sine voltage is applied to 
the auxiliary piezoelement, the law of its mechanical dis- 
placement would not be exactly the sine because of the pres- 
ence of hysteresis. The model for approximation of hyster- 
esis loops would allow to increase the precision of this 
method. To do that, the voltage applied to the auxiliary pi- 
ezoelement must match x(a) by formula (1). In that case, the 
displacement y(a) will be a harmonica1 function. 

The model described may prove useful with the tasks of 
imitation modeling as well as in engineer calculations of 
nonlinear control systems containing hysteresis elements. 

ACKNOWLEDGMENTS 

I want to thank Oleg E. Lyapin, Valery V. Efremov, Oleg 
D. Cnab, Vladimir N. Yakovlev, and Oleg V. Obyedkov for 
their helpful advice and discussions. 
4730 Rev. Sci. Instrum., Vol. 66, No. 9, September 1995 
York, 1968). 
15S Hirano, T. Yogo, K. Kikuta, Y. Araki, M. Saitoh, and S. Ogasahara, J. 

Ak. Ceram. Sot. 75, 2785 (1992). 
r6G D. E. Lakeman and D.A. Payne, J. Am. Ceram. Sot. 75, 3091 (1992). 
“D. W. Pohl and R. MoIIer, Rev. Sci. Instrum. 59, 840 (1988). 
“R. V. Lapshin and 0. V. Obyedkov, Rev. Sci. Instrum. 64, 2883 (1993). 

APPENDIX 

Beside smooth loops, the model suggested can be imple- 
mented for description of piecewise-linear loops as well (see 
Refs. 1 and 2). To obtain a set of piecewise-linear hysteresis 
loop primitives, in formula (1) there must be used some 
piecewise-linear functions instead of sin c~ and cos IX. They 
could be, for instance, trapeziumlike pulses with unit ampli- 
tude 

trhCaj=i (A (a-i ZJC- l>‘rectltwY
+(-I)’ rectz(a,i) , 

i 
(Al) trp,(a)=trp, ( i a+; 9 

where the subscripts s and c refer to sine and cosine, respec- 
tively; d and D are the upper and lower bases of the trape- 
zium, respectively; T= d + D is the period of pulses; 

rectt(cu,i)=l(cu+(D-d)/4-iT/2) 

-l(a-(D-d)/4-iT/2) 

rect,(a,i)=l(a-(D-dj/4-iT/2) 

-l(c~-(D-d)/4-d-iT/2) 

are the ith rectangular pulses; 1 (a?i) is the ith unit step 
function. Triangle functions [tri,( a) =lim,,, trp,( n) and 
tri,( a) =tri,( (Y + T/4)] or rectangle functions [rect,( a) 
=lim,,, &p,(a) and rectJaj=rect#(a+ T/4)] could be 
also used to that purpose. 
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